首页 / 知识
python 序列化及其相关模块
2023-11-12 13:33:00
什么是序列化对象?
我们把对象(变量)从内存中编程可存储或传输的过程称之为序列化,在python中称为pickle,其他语言称之为serialization,marshalling,flatterning等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上(因为硬盘或网络传输时只接受bytes)。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpacking。
为什么要序列化?
举个例子,你在打游戏过程中,打累了,停下来,想过两天再玩,两天之后,游戏又从你上次停止的地方继续运行,你上次游戏的进度肯定保存到硬盘上了,那么是以何种形式呢?游戏过程中产生的很多临时数据是不规律的,可能在你关掉游戏时正好是10个列表,3个嵌套字典的数据集合在内存里面,需要存下来,你如何存?把列表变成文件里的多行多列形式?那嵌套字典呢?根本没法存吧,所以,若是有种办法可以直接把内存数据存到硬盘上,下次程序再启动,再从硬盘上读出来,还是原来的格式,那是最好的,所以这就是我们要说的序列化。
1、持久保存状态
一个软件/程序的执行就在处理一系列状态的变化,在编程语言中,‘状态’会以各种各样有结构的数据类型(也可以简单的理解为变量)的形式被保存在内存中
内存是无法永久保存数据的,当程序运行了一段时间,我们断电或者重启程序,内存中关于这个程序的之前一段时间的数据(有结构)都被清空了。
在断电或重启程序之前将程序当前内存中所有的数据都保存下来(保存到文件中),以便于下次程序执行能够从文件中载入之前的数据,然后继续执行,这就是序列化。
2、跨平台数据交互
序列化之后,不仅可以把序列化后的内容写入磁盘,还可以通过网络传输到别的机器上,如果收发的双方约定好使用一种序列化的格式,那么变打破了平台/语言差异化带来的限制,实现了跨平台的数据交互。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling.
什么可以序列化操作?
在python中,可以使用pickle和json两个模块对数据进行序列化操作
其中:
json可以用于字符串或者字典等与python数据类型之间的序列化与反序列化操作
pickle可以用于python特有类型与python数据类型之间的序列化与反序列化操作
提问:这时候有人肯定要问,两个都可以对数据进行序列化,为什么不只学习一个就好了,非要学习两个呢?
这个问题问的好,我们下面详细讲一下两个的区别。
关于json
优点:跨语言,体积小
缺点:只能支持int(整形),str(字符串),list(列表),tuple(元祖),dict(字典)
关于pickle
优点:专门为python设计,只支持python所有的数据类型
缺点:只能在python中使用,存储数据占空间大
以上内容为大家介绍了python序列化及其相关模块,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注我们
最新内容
相关内容
Python网络编程调用接收数据的三种
Python网络编程调用接收数据的三种方法,数据,代码,基础,通用,通讯,服务,网络,培训,方法,报文,最近在使用python进行网络编程开发一个通用的tc数据科学领域Python比R语言更好
数据科学领域Python比R语言更好,数据,公司,工具,时间,项目,工作,庞大,受益,系统,代码,经常有学员问我们,在数据科学领域里,到底是该选Python呢,python的数据类型
python的数据类型,数字,较大,数据,培训,变量,表示,字符串,赋值,常量,小数,1.整型Python可以处理任意大小的整数,当然包括负整数,在程序中的表示优化 Python 程序的内存占用
优化 Python 程序的内存占用,代码,数据,情况,培训,对象,字典,内存,垃圾,程序,机制,Python的垃圾回收机制通过引用计数来决定一个对象要不要被Python语言自带的数据结构有哪些
Python语言自带的数据结构有哪些,异常,数字,数据,元素,序列,培训,位置,名称,分析,括号,Python作为一种脚本语言,其要求强制缩进,使其易读、美观提升Python数据分析能力的方法
提升Python数据分析能力的方法,分析,数据,工具,代码,时间,环境,报告,信息,培训,标准,1.Pandas分析包这个工具的好处是显而易见的。下面的动画Python数据结构的时间复杂性
Python数据结构的时间复杂性,时间,项目,情况,平均,复杂度,培训,术语,数据,状态,操作,1.让我们了解大O符号的含义是什么?在算法中执行许多操作提升Python程序性能的好习惯
提升Python程序性能的好习惯,代码,名字,检测,数据,培训,模块,函数,变量,性能,对象,掌握一些技巧,可尽量提高Python程序性能,也可以避免不必要的数据科学中必须了解的Python核心库
数据科学中必须了解的Python核心库,数据,生产,代码,标准,分析,培训,图片,工具,统一,涉足,python有三个核心数据科学库,在此基础上还创建了许多使用Python处理JSON格式的数据
使用Python处理JSON格式的数据,数据,代码,名称,信息,培训,对比,灵活,字典,文件,格式,如果你不希望从头开始创造一种数据格式来存放数据,JSON是Python变量数据类型的转换
Python变量数据类型的转换,代码,数据,培训,信息,字符串,类型,变量,整数,浮点,函数,虽然Python是弱类型编程语言,不需要像Java或C语言那样还要Python元类之通过元类实现数据库OR
Python元类之通过元类实现数据库ORM框架,数据,名称,信息,代码,主体,当中,字段,分析,一致,投入,ORM框架是什么如果是没有做过后端的小伙伴上来